skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bates, Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extreme precipitation events are driven by complex multiscale atmospheric dynamic interactions, fuelled by available moisture. They are expected to intensify with climate change, posing increasing risks to human communities and ecosystems. However, current low-resolution climate models struggle to accurately represent key extreme precipitation-generating phenomena, limiting our ability to generate robust and reliable future projections. Here we present an ensemble of climate simulations with a 10-to-25-km resolution and an improved representation of mesoscale convective systems to assess future changes in daily extreme precipitation and its drivers. Our high-resolution simulations more realistically capture the observed spatial distribution and intensity of daily extreme precipitation over the historical period than the 100-km resolution counterparts. In a future scenario with high carbon dioxide emissions, daily extreme precipitation over land could increase by about 41% by 2100, mainly as a result of increased mesoscale moisture convergence. The impact of this dynamical contribution to extreme precipitation is underestimated by a factor of three in the low-resolution model. These results highlight the crucial role of high-resolution climate modelling in constraining future extremes and informing more effective climate risk assessments and adaptation strategies. 
    more » « less
  2. Abstract Extreme sea-level events, such as those caused by tropical cyclones (TCs), pose significant risks to coastal areas. However, the current generation of climate models struggles to simulate these events due to coarse resolution. By comparing high-resolution (HR) and low-resolution (LR) Community Earth System Model simulations with tide gauge and altimeter data along the US. Gulf of Mexico (GoM) coast, we find that HR better represents both mean dynamic sea level (DSL) and daily mean extreme DSL (EDSL) statistics. In contrast, LR significantly underestimates the strength of EDSL mainly due to its deficiency in simulating strong TCs. Both observations and HR show larger daily mean EDSL on the western Gulf coast than on the eastern side, highlighting the need for HR climate simulations to improve coastal resilience planning. 
    more » « less
  3. null (Ed.)
    Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes. 
    more » « less
  4. null (Ed.)